倒立摆实验报告
倒立摆实验报告 机自 82
组员:李宗泽
李航
刘凯
付荣 倒立摆与自动控制原理实验 一. 实验目得:
1、运用经典控制理论控制直线一级倒立摆,包括实际系统模型得建立、根轨迹分析与控制器设计、频率响应分析、PID 控制分析等内容、 2、运用现代控制理论中得线性最优控制LQR 方法实验控制倒立摆 3、学习运用模糊控制理论控制倒立摆系统 4、学习MATLAB工具软件在控制工程中得应用 5、掌握对实际系统进行建模得方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习得控制理论对系统进行控制器得设计,并对系统进行实际控制实验,对实验结果进行观察与分析,非常直观得感受控制器得控制作用。
二、
实验设备 计算机及MATLAB、VC等相关软件 固高倒立摆系统得软件 固高一级直线倒立摆系统,包括运动卡与倒立摆实物 倒立摆相关安装工具 三. 倒立摆系统介绍 倒立摆就是机器人技术、控制理论、计算机控制等多个领域、多种技术得有机结合,其被控系统本身又就是一个绝对不稳定、高阶次、多变量、强耦合得非线性系统,可以作为一个典型得控制对象对其进行研究。倒立摆系统作为控制理论研究中得一种比较理想得实验手段,为自动控制理论得教学、实验与科研构建一个良好得实验平台,以用来检验某种控制理论或方法得典型方案,促进了控制系统新理论、新思想得发展。由于控制理论得广泛应用,由此系统研究产生得方法与技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中得垂直度控制、卫星飞行中得姿态控制与一般工业应用等方面具有广阔得利用开发前景. 倒立摆已经由原来得直线一级倒立摆扩展出很多 种类,典型得有直线倒立摆环形倒立摆,平面倒立摆与复合倒立摆等,本次实验采用得就是直线一级倒立摆。
倒立摆得形式与结构各异,但所有得倒立摆都具有以下得 特性: 1)
非线性2)
不确定性3) 耦合性4) 开环不稳定性5)
约束限制
倒立摆 控制器得设计就是倒立摆系统得核心内容,因为倒立摆就是一个绝对不稳定得系统,为使其保持稳定并且可以承受一定得干扰,需要给系统设计控制器,本小组采用得 控制方法有:PID 控制、双PID控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆得物理模型: 系统建模可以分为两种:机理建模与实验建模。实验建模就就是通过在研究对象上加上一系列得研究者事先确定得输入信号,激励研究对象并通过传感器检测其可观测得输出,应用数学手段建立起系统得输入-输出关系。。机理建模就就是在了解研究对象得运动规律基础上,通过物理、化学得知识与数学手段建立起系统内部得输入-状态关系。,由于倒立摆本身就是自不稳定得系统,实验建模存在一定得困难。但就是忽略掉一些次要得因素后,倒立摆系统就就是一个典型得运动得刚体系统,可以在惯性坐标系内应用经典力学理论建立系统得动力学方程。
下面我们采用 牛顿- - 欧拉方 法建立直线型一级倒立摆系统得数学模型:
在忽略了空气阻力与各种摩擦之后,可将直线一级倒立摆系统抽象成小车与匀质杆组成得系统,如图所示:
我们不妨做以下假设: M 小车质量 m 摆杆质量 b
小车摩擦系数 l 摆杆转动轴心到杆质心得长度 I
摆杆惯量 F 加在小车上得力 x 小车位置 φ 摆杆与垂直向上方向得夹角 θ 摆杆与垂直向下方向得夹角(考虑到摆杆初始位置为竖直向下) 图就是系统中小车与摆杆得受力分析图。其中,N 与P 为小车与摆杆相互作用 力得水平与垂直方向得分量。
注意:在实际倒立摆系统中检测与执行装置得正负方向已经完全确定,因而 矢量方向定义如图所示,图示方向为矢量正方向。
分析小车水平方向所受得合力,可以得到以下方程:
(3—1) 由摆杆水平方向得受力进行分析可以得到下面等式:
(3-2) 即:
(3-3) 把这个等式代入式(3—1)中,就得到系统得第一个运动方程:
(3—4)
为了推出系统得第二个运动方程,我们对摆杆垂直方向上得合力进行分析, 可以得到下面方程:
(3—5)
(3-6)
力矩平衡方程如下:
(3-7) 注意:此方程中力矩得方向,由l,故等式前面有负号。
合并这两个方程,约去P 与N,得到第二个运动方程:
(3-8) 设θ=φ+π( φ就是摆杆与垂直向上方向之间得夹角),假设φ与1(单位就是弧 度)相比很小,即φ〈<1,则可以进行近似处理:
用u 来代表被控对象得输入力F,线性化后两个运动方程如下:
(3-9) 对式(3—9)进行拉普拉斯变换,得到
(3—10) 注意:推导传递函数时假设初始条件为0。
由于输出为角度φ,求解方程组得第一个方程,可以得到:
或
如果令
则有:
把上式代入方程组得第二个方程,得到:
整理后得到传递函数:
其中
设系统状态空间方程为:
方程组 对,
解代数方程,得到解如下:
整理后得到系统状态空间方程:
由(3-9)得第一个方程为:
对于质量均匀分布得摆杆有:
于就是可以得到:
化简得到:
设
则有:
另外,也可以利用MATLAB 中tf2ss 命令对(3-13)式进行转化,求得上述状 态方程。
实际系统得模型参数如下: M 小车质量 1.096 Kg m 摆杆质量 0。109 Kg b
小车摩擦系数 0 、1N/m/sec l
摆杆转动轴心到杆质心得长度 0、2 5m I 摆杆惯量 0.0034 kg*m*m 把上述参数代入,可以得到系统得实际模型。
摆杆角度与小车位移得传递函数:
摆杆角度与小车加速度之间得传递函数为:
摆杆角度与小车所受外界作用力得传递函数:
以外界作用力作为输入得系统状态方程:
以小车加速度作为输入得系统状态方程:
注意事项:在固高科技所有提供得控制器设计与程序中,采用得都就是以 小车得加速度作为系统得输入,如果用户需要采用力矩控制得方法,可以参考以 上把外界作用力作为输入得各式. 五.系统得阶越响应分析
根据已经得到系统得状态方程,先对其进行阶跃响应分析,在MATLAB 中 键入以下命令:
clear; A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 29、4 0]; B=[ 0 1 0 3]’; C=[ 1 0 0 0;0 1 0 0]; D=[ 0 0 ]’; step(A, B ,C ,D)
可以瞧出,在单位阶跃响应作用下,小车位置与摆杆角度都就是发散得. 六.频率响应分析(系统稳定性分析)
前面我们已经得到了直线一级倒立摆得物理模型,实际系统得开环传递函数 为:
其中输入为小车得加速度V (s) ,输出为摆杆得角度Φ(s)
. 在MATLAB 下绘制系统得Bode 图与奈奎斯特图. 在MATLAB 中键入以下命令: clear; num=[0、02725]; den=[0、0102125 0 —0、26705]; z=roots(num); p=roots(den); subplot(2,1,1) bode(num,den) subplot(2,1,2)
nyquist(num,den) 得到如下图所示得结果:
z = Empty matrix: 0—by-1 p = 5、1136 -5、1136
可以得到,系统没有零点,但存在两个极点,其中一个极点位于右半s 平面, 根据 奈奎斯特稳定判据,闭环系统稳定得充分必要条件就是:当ω 从− ∞到+ ∞变 化时,开环传递函数G( jω )
沿逆时针方向包围-1 点p 圈,其中p
为开环传递函数 在右半S 平面内得极点数。对于直线一级倒立摆,由奈奎斯特图我们可以瞧出,开 环传递函数在S 右半平面有一个极点,因此G( j ω ) 需要沿逆时针方向包围—1 点一圈。可以瞧出,系统得奈奎斯特图并没有逆时针绕—1 点一圈,因此系统不稳定, 需要设计控制器来镇定系统。
七.具体控制方法 ( 一)双 双 PID 控制
直线一级倒立摆双 PID 控制实验
1。PID 控制分析
经典控制理论得研究对象主要就是单输入单输出得系统,控制器设计时一般需
要有关被控对象得较精确模型。PID 控制器因其结构简单,容易调节,且不需要
对系统建立精确得模型,在控制上应用较广。
对于倒立摆系统输出量为摆杆得角度,它得平衡位置为垂直向上得情
况。系统控制结构框图如下:
2、双 PID 实验控制参数设定及仿真。
在 Simulinkzhong 建立直线一级倒立摆模型
上下两个 PID 模块。鼠标右键,选择 “ Look under mask”打开模型内部结构分别为:
双击第二个模块打开参数设置窗口
令 kp=1、ki=0、kd=0 得到摆杆角度仿真结果
可瞧出控制曲线不收敛。因此增大控制量。令 kp=-30、ki=0、kd=4、6、得到如下仿 真结果
从上面摆杆角度仿真结果可瞧出,稳定比较好。但稳定时间稍微有点长。
双击第一个模块打开参数设置窗
经多次尝试在此参数即 kp=—7,ki=0,kp=-4、5 情况下效果最好。
得到以下仿真结果
黄线为小车位置输出曲线,红线为摆杆角度输出曲线. 从图中可以瞧出,系统可以比较好得稳定。稳定时间在2—3 秒之间。稳定性不错. 3。双 PID 控制实验 打开直线一级倒立摆爽 PID 实时控制模块
双击doublePID控制模块进入参数设置
把参数输入 PID 控制器。编译程序,使计算机同倒立摆连接。
运行程序.实验结果如下图所示
从图中可以瞧出,倒立摆可以实现比较好得稳定性。
(二) 线性最优二次控制 LQR
线性二次最优控制LQR 控制实验
1 线性二次最优控制 LQR 基本原理及分析
线性二次最优控制LQR 基本原理为,由系统方程:
确定下列最佳控制向量得矩阵 K:
u(t)=—K*x(t)
使得性能指标达到最小值:
式中
Q——正定(或正半定)厄米特或实对称阵
R——为正定厄米特或实对称阵
图 3-54
最优控制 LQR 控制原理图
方程右端第二项就是考虑到控制能量得损耗而引进得,矩阵 Q 与R确定了误差与能量损耗得相对重要性。并且假设控制向量 u(t)就是无约束得.
对线性系统:
根据期望性能指标选取Q 与 R,利用 MATLAB 命令 lqr 就可以得到反馈矩阵 K 得值。
K=lqr(A,B,Q,R)
改变矩阵 Q 得值,可以得到不同得响应效果,Q 得值越大(在一定得范围之内),系统抵抗干扰得能力越强,调整时间越短。但就是Q 不能过大
2、 LQR 控制参数调节及仿真
前面我们已经得到了直线一级倒立摆系统得比较精确得动力学模型,下面我们针对直线型一级倒立摆系统应用 LQR 法设计与调节控制器,控制摆杆保持竖直向上平衡得同时,跟踪小车得位置。
前面我们已经得到了直线一级倒立摆系统得系统状态方程:
应 用 线 性 反 馈 控 制 器 , 控 制 系 统 结 构 如 下 图 。
图 中 R
就是施加在小车上得阶跃输入,四个状态量 x,x,φ,φ分别代表小车位移、小车速度、摆杆角度与摆杆角速度,输出 y = [x,φ]’ 包括小车位置与摆杆角度。设计控制器使得当给系统施加一个阶跃输入时,摆杆会摆动,然后仍然回到垂直位置,小车可以到达新得指定位置.
假设全状态反馈可以实现(四个状态量都可测),找出确定反馈控制规律得向量K
.在 Matlab
中得到最优控制器对应得K
。Lqr
函数允许您选择两个参数——R 与 Q,这两个参数用来平衡输入量与状态量得权重。最简单得情况就是假设
R = 1,Q =C’
*C .当然,也可以通过改变 Q 矩阵中得非零元素来调节控制器以得到期望得响应.
其中, Q1,1 代表小车位置得权重,而 Q3,3 就是摆杆角度得权重,输入得权重 R 就是 1。
下面来求矩阵 K,Matlab 语句为 K = lqr(A,B,Q,R)
。下面在
MATLAB 中编程计算: A=[0 1 0 0 ; 0 0 0 0;0 0 0 1; 0 0 29、4 0]; B=[0 1 0 3]’; C=[1 0 0 0; 0 0 1 0]; D=[0 0]"; Q11=1500;Q33=300; Q=[Q11 0 0 0;
0 0 0 0;
0 0 Q33 0;
0 0 0 0]; R=1; K=lqr(A,B,Q,R); Ac=[(A—B*K)];Bc=[B];Cc=[C];Dc=[D]; T=0:0、005:5; U=0、2*ones(size(T)); Cn=[1 0 0 0]; Nbar=rscale(A,B,Cn,0,K);Bcn=[Nbar*B]; [Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); plot(T,X(:,1),"—');hold on; plot(T,X(:,2),’—");hold on; plot(T,X(:,3),"、");hold on; plot(T,X(:,4),"-’);
legend("cartpls","cartspd’,'pendang’,"pendspd’) 令 Q1,1= 1,Q3,3 =1 求得
K
[—1
—1、7855
25、422
4、6849]
在 Simulink 中建立直线一级倒立摆得模型如下图所示:
“LQR Controller”为一封装好得模块,在其上单击鼠标右键,选择“Look under
mask"打开 LQR Controller 结构如下:
双击“Matrix gain K”即可输入控制参数:
点击 执行仿真,得到如下仿真结果:
LQR 控制得阶跃响应如上图所示,从图中可以瞧出,闭环控制系统响应得超调量很小,但稳定时间与上升时间偏大,我们可以通过增大控制量来缩短稳定时间与上升时间。
可以发现,Q
矩阵中,增加 Q11 使稳定时间与上升时间变短,并且使摆杆得角度变化减小.经过多次尝试,这里取 Q1,1=1500, Q3,3 =300,
则 K = [
-32、7298
-23、8255
81、6182 14、7098]
输入参数,运行得到响应曲线如下:
从图中可以瞧出,系统响应时间有明显得改善,增大Q1,1 与Q3,3
,系统得响应还会更快,但就是对于实际离散控制系统,过大得控制量会引起系统振荡. 3、直线一级倒立摆LQR 控制实验 打开直线一级倒立摆 LQR 实时控制模块
其中“LQR Controller”为 LQR 控制器模块,“Real Control”为实时控制模块,双击“LQR Controller”模块打开 LQR 控制器参数设置窗口如下:
在“LQR Controller”模块上点击鼠标右键选择“Look under mask"打开模
型如下:
双击“Real Control"模块打开实时控制模块如下图:
其中“Pendulum”模块为倒立摆系统输入输出模块,输入为小车得速度“Vel ”与“Acc ”,输出为小车得位置“Pos”与摆杆得角度“Angle ”。
双击“Pendulum"模块打开其内部结构:
其中“Set Cart’s Acc and Vel"模块得作用就是设置小车运动得速度与加速度,
Get Cart’s Position"模块得作用就是读取小车当前得实际位置,“Get Pend’s Angle" 得作用就是读取摆杆当前得实际角度. 2)
运行程序,
实验运行结果如下图所示:
其中图片上半部分为小车得位置曲线,下半部分为摆杆角度得变化曲线,从图中可以瞧出,小车位置与摆杆角度比较稳定。控制效果很好。
在此实验中,R 值固定,R=1,则只调节 Q 值,Q11 代表小车位置得权重,而 Q33 就是摆杆角度得权重,若Q33增加,使得θ得变化幅度减小,而位移r得响应速度变慢;若Q11 增加,使得 r 得跟踪速度变快,而θ得变化幅度增大.当给系统施加一个阶跃输入后,得到系统得响应结果。从响应曲线可明显瞧出就是否满足系统所要达到得性能指标要求。通过这样反复不断得试凑,选取能够满足系统动态性能要求得 Q 与 R。
( 三) 直线二级倒立摆 直线两级倒立摆由直线运动模块与两级倒立摆组件组成.
6、1
系统物理模型
为简化系统,我们在建模时忽略了空气阻力与各种摩擦,并认为摆杆为刚体。
二级倒立摆得组成如图
6—1
所示:
图 6—1 直线两级倒立摆物理模型
倒立摆参数定义如下:
M
小车质量
m1
摆杆 1 得质量
m2
摆杆 2 得质量
m3
质量块得质量
l1
摆杆 1 中心到转动中心得距离
l2
摆杆 2 中心到转动中心得距离
θ1 摆杆 1 与竖直方向得夹角 θ2 摆杆 2 与竖直方向得夹角
F
作用在系统上得外力
利用拉格朗日方程推导运动学方程:
拉格朗日方程为: L(q,q)=T(q,q)—V(q,q)
其中
L
为拉格朗日算子,q
为系统得广义坐标,T 为系统得动能,V 为系统得势能。
其中
i =1,2,3„„n,f i
为系统在第 i 个广义坐标上得外力,在二级倒立摆系统中,系统得广义坐标有三个广义坐标,分别为 x,θ1,θ2 。
首先计算系统得动能:
其中 Tm,Tm1,Tm2,Tm3分别为小车得动能,摆杆 1 得动能,摆杆 2 得动能与质量块得动能。
小车得动能:
Tm1
= Tm1" +Tm2 ’' 其中 Tm1" ,Tm2 ’ 分别为摆杆 1 得平动动能与转动动能。
Tm2
= Tm2 " +Tm2 ’’ 其中 Tm2 " ,Tm2 ’ 分别为摆杆 2 得平动动能与转动动能.
对于系统,设以下变量:
xpend1
摆杆 1 质心横坐标;
yangle1 摆杆 1 质心纵坐标;
xpend2
摆杆 2 质心横坐标;
yangle2 摆杆 2 质心纵坐标;
xmass
质量块质心横坐标;
ymass 质量块质心纵坐标;
又有:
由于系统在θ1,θ2 广义坐标下没有外力作用,所以有:
在Mathematics中计算以上各式。
因其余各项为 0,所以这里仅列举了 k12、k13、k17、k22、k23、k27
等 7 项,得到结果如下:
6、2
系统可控性分析
系统状态矩阵 A,B,C,D 如下:
利用 MATLAB 计算系统状态可控性矩阵与输出可控性矩阵得秩:
得到结果如下:
或就是通过 MATLAB 命令 ctrb 与 obsv 直接得到系统得可控性与可观测性。
运行得到:
可以得到,系统状态与输出都可控,且系统具有可观测性. 6、3
直线两级倒立摆MATLAB
仿真
在 MATLAB Simulink 中建立直线两级倒立摆得模型:
其中“State-Space”模块为直线两级倒立摆得状态方程,双击模块打开模型:
“Controller”模块为控制器模块,在“Controller”模块上单击鼠标右键,选择 “ Look under mask”打开模型内部结构:
其中“Matrix Gain K”为反馈矩阵。
双击“Controller"模块打开其参数设置窗口: 先设置参数为“1"。
“Disturbance”模块为外界干扰模块,其作用就是给系统施加一个阶跃信号,点击
“ ”运行模型进行开环系统仿真.
得到运行结果如下:
从仿真结果可以瞧出,系统发散,为使系统稳定,需要对其添加控制器。
6、4 LQR 控制器设计及仿真
给系统添加 LQR 控制器,添加控制器后得系统闭环图如下图所示 :
下面利用线性二次最优控制 LQR 方法对系统进行控制器得设计 clear;clc;—=22kﻫ;46、6=71k;26、12-=31k;96、68=21kﻫ40、31;k23=39、45;k27=-0、088; a= [0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1;0
0 0 0
0 0; 0
k12 k 13 0 0 0 ;0 k22 k23 0 0 0];ﻫ;"]72k 71k 1 0 0 0 [=bﻫc =[ 1
0 0 0 0 0 ;0 1 0 0 0 0;0 0 1 0 0 0]; ;]0 ;0 ;0[=dﻫq 1 1= 1 ; q 2 2 = 1;q3 3 =1; qﻫ = [q11 0 0 0 0 0;0 q22 0 0 0 0;0 0 q33 0 0 0;0 0 0 0 0 0;0 0 0 0 0 0;0 0 0 0 0 0]; r=1; ;k*b—a=aaﻫ)r,q,b,a(rql=kﻫ
b=b*k(1); ;)d,c,b,aa(ss=sysﻫt=0:0、01:5; [y,t,x]=step(sys,t); plot(t,y(:,1),’g’,t,y(:,2),'r",t,y(:,3));o dirgﻫn 运行得到以下结果:
LQR 控制参数为:
K=[ 1
73、818 —83、941
2、0162 4、2791 -13、036]
得到仿真结果如下:
可以瞧出,系统稳定时间过长,因此增加权重 Q 得值。
设 Q11=300;Q22=500;Q33=500;
运行得到仿真结果:
LQR 控制参数为:
K=[ 17、321
110、87 -197、57
18、468 2、7061 —32、142]
从图中可以瞧出,系统可以很好得稳定,在给定倒立摆干扰后,系统在 2、5 秒内可以恢复到平衡点附近。
把以上仿真参数输入 Simulink 模型中
得到运行结果
从图中可知,系统稳定性还不错。
但这未必就是最好得参数。所以,下面改变 LQR 参数,比较结果变化。
确定最合适参数。
1、 设 Q11=1000;Q22=500;Q33=500;
运行得到仿真结果: LQR 控制参数为:
k=31、6228 116、7093 -238、1742 29、1041 1、2221
-39、3596
可瞧出位置在 2 秒左右就可恢复到平衡点位置。而角度依然就是在 2、5 秒内恢复到平衡位置. 2、设 Q11=1500;Q22=500;Q33=500;
运行得到仿真结果: LQR 控制参数为:
k= 38、7298 119、2083 —257、0671 34、1612 0、5092
-4 2 、 7166
可瞧出位置在1、5—2、0秒内就可恢复到平衡点位置.而角度依然就是在 2、5 秒内恢复到平衡位置。
3、 设Q11=1500;Q22=500;Q33=500;
运行得到仿真结果: LQR 控制参数为:
k =
44、7214
121、1834 —272、5934
38、3562
—0、0849
—45、4751
可瞧出位置依然在 1、5秒就可恢复到平衡点位置。而角度依然就是在 2、5 秒内恢复到平衡位置. 4、设 Q11=1500;Q22=1000;Q33=1000;
运行得到仿真结果: LQR 控制参数为: k =
38、7298
129、4996 -281、3118
35、7389
0、4721
—46、5905
可瞧出位置在 1、5—2、0内就可恢复到平衡点位置。而角度就是在 2、5 秒内恢复到平衡位置. 5、设 Q11=1500;Q22=100;Q33=100;
运行得到仿真结果: LQR 控制参数为:
k =
38、7298
108、6175 -232、1487
32、4616
0、5479
-38、7170
可瞧出位置在 1、5内就可恢复到平衡点位置.而角度就是在 2 秒内恢复到平衡位置. 通过对比,第 5 个参数最合适。
LQR 控制参数为: k =
38、7298
108、6175 -232、1487
32、4616
0、5479
-38、7170 把其输入到Simulink 模型中。
得到运行结果。
此结果最好,系统不仅可以很好得稳定,而且在给定倒立摆干扰后,系统可在 2 秒内恢复到平衡点附近. 八. 个人小结。
倒立摆实验个人小结
李航 08011041
大三上学期得第一次机械工程实验,我们接触与学习了减速器,维持一个学期得实验,我们从结构,运动等方面,对机械有了更深得认识,而这个学期,我们要更进一步,从机械控制理论,来让自己对机械得理解,有一个新得高度。
我们接触得倒立摆就是机器人技术、控制理论、计算机控制等多个领域、多种技术得有机结合,其被控系统本身又就是一个绝对不稳定、高阶次、多变量、强耦合得非线性系统,可以作为一个典型得控制对象对其进行研究。
倒立摆数学模型:
通过对倒立摆系统得物理模型与实际模型得认知,以及对该系统得阶跃响应,可控性分析与频率响应分析,我们可以知道倒立摆系统就是不稳定得,可控得,所以就有了我们得课题:具体得控制方法。
在前半个学期,我们学习了机械控制理论,了解了伯德图与奈奎斯特图,而在大一得高数学习中,我们初步学习了MATLAB,通过在图书馆以及网上查找资料,我们学习了SIMULINK仿真,为这次实验打下了一定得基础。
对于一级倒立摆线性系统,我们实验了两种控制方法:分别就是双PID控制与LQR控制。
常规得PID控制,就是最早得也就是最经典得一种控制方式,由于其算法简单、鲁棒性好、可靠性高,因而至今仍广泛应用于工业过程控制中。它有三个控制环节,分别就是比例、积分与微分,实验中使用得控制器得传递函数就是
其中Kp、Ki、Kd分别为比例系数、积分系数与微分系数。各个系数功能如下: 1、 比例系数Kp增大,闭环系统得灵敏度增加,稳态误差减小,系统振荡增强;比例系数超过某个值时,闭环系统可能变得不稳定。
2、 积分系数Ki增大,可以提高系统得型别,使系统由有差变为无差;积分作用太强会导致闭环系统不稳定。
3、 微分系数Kd增大,预测系统变化趋势得作用增强,会使系统得超调量减小,响应时间变快. 但就是上述得各个参数在调节过程中并不就是相互独立得,而就是会相互影响。PID控制得快速性较差,而且只能对摆角进行控制,无法控制位移。
双PID控制,则解决了传统得PID控制只能控制摆角得缺陷,但就是对于双PID控制,如何使摆角角度与小车位置达到协调,使系统响应收敛,就是个难题,而且PID控制就是单控制量,外部扰动对实验结果得影响会比较大,所以我们学习了线性二次型控制,也就就是LQR控制。
LQR控制就是通过最小化性能指标,得到系统得控制量U=-KX,其中Q,R,分别就是状态变量与输入向量得加权矩阵,X就是状态量,U就是控制量,K就是状态矩阵.根据期望性能指标选取Q与R,利用MATLAB 命令lqr 就可以得到反馈矩阵K 得值。K=lqr( A,B,Q,R)
改变矩阵Q 得值,可以得到不同得响应效果,Q 得值越大(在一定得范围之内),系统抵抗干扰得能力越强,调整时间越短。利用MATLAB自带得函数,可以很快算出反馈矩阵各参数得值.
通过实验结果,我们发现LQR控制作为多变量得控制,稳定性,快速性与抗
干扰性都很好,,LQR控制可得到状态线性反馈得最优控制规律 ,易于构成闭环最优控制就是现代控制理论中发展最早也最为成熟得一种状态空间设计法。
实验心得: 比较这三种控制方法,经典PID控制方法得效果就是最不理想得,因为PID这类单输入输出得线性控制器,对于倒立摆这种非线性,很不稳定得系统,虽然能使其稳定,但就是快速性与抗干扰性都很差,相比较而言,LQR得效果就要好很多。
这次得倒立摆实验,可以说就是我做过得最难得一个实验了,不仅涉及面十分广,而且涉及得知识也都很难。通过这次实验,我们对机械控制理论有了更深一步得了解,也把书上学得知识,应用到了实际中. 在实验过程中,我们认识了倒立摆这个经典得控制系统,也接触了PID与LQR等多种控制方法,让我们对机械,这个词得概念,也更加深入得有了自己得理解。
而且作为一个分组实验,我充分感受到了团队力量得强大,也体会到了克服困难得艰辛,学会了用多种得途径去解决难题。通过预习,借阅书籍,上网等多种途径,也为将来得学习打下良好得基础。
而且通过这个控制领域得经典基础实验,为将来考研以及科研都就是很有帮助得。
同时要感谢同学与老师对自己得帮助,让自己能顺利得完成这次实验. 但就是在实验中,我个人也有一些建议。首先这个实验得基础就是机械控制理论基础这门课,但就是这么课我们在实验开始得时候压根就没学,所以前几周只能靠自学或者毫无进展,但就是自学不能保证效率,所以实验得时间安排感觉不就是很好。
倒立摆实验小结
李宗泽
我就是这次倒立摆实验我们小组得组长,由于分组得关系,我们组得组员平时成绩都不就是特别理想,但就是从一开始,我们就有信心能把这次实验完成。
这次实验要求我们运用经典控制理论控制直线一级倒立摆,包括实际系统模型得建立、控制器设计、频率响应分析、PID 控制分析等内容。运用现代控制理论中得线性最优控制LQR 方法实验控制倒立摆.并且能熟练得运用matlab解决实际问题,了解SIMULINK仿真。
倒立摆就是一种典型得快速、多变量、非线性、绝对不稳定、非最小相位系统.就是进行控制理论研究得典型实验平台,倒立摆实验就是运用古典控制理论,结合现代应用软件MATLAB里得SIMULINK对其进行仿真,最后在实际实验中对摆杆进行快速性,准确性与稳定性控制,达到理想得效果。因此,研究倒立摆具有重要得理论与实践意义。
实验得初期,也就就是前几周,我们主要先大致预习了控制理论里得频率响应与时域响应得内容,了解了伯德图与奈奎斯特图得含义。并且到图书馆里借阅了相关书籍,到网上查找有关资料,并且结合大一时得高数课,复习了matlab得基本操作。
这次实验得主要内容就是利用三种控制方法,使倒立摆系统达到稳定,并且比较三种控制方法得优劣。
我们首先做得就是经典PID控制,经典PID控制就是最早发展起来得一种控制方法,由于其算法简单、鲁棒性好、可靠性高,因而至今仍广泛应用于工业过
程控制中。该方法得主要思想就是:根据给定值r与系统得实际输出值c构成控制偏差e,然后将偏差得比例( P) 、积分( I)与微分(D)三项通过线性组合构成控制量,对被控对象进行控制,故称为PID控制。
比例环节P得作用,就是对当前时刻得偏差信号进行放大或衰减后作为控制信号输出。积分环节I可以累计从零时刻起到当前得输入信号得全部值。微分环节D得输出正比于输入得当前变化率,作用就是有偏差信号得当前变化率来预见随后得偏差将就是增大还就是减小,增减幅度如何。PID控制通过调节KP,KI,KD三个基本参数,来实现仿真,达到预期得控制效果,但就是PID控制就是一个单输入输出得控制,它只能摇杆得角度,而不能控制小车得位移。
双PID控制就是利用两个PID来同时控制倒立摆系统,双PID得模型如下:
双PID控制虽然能控制小车得位移,但就是我们在实际操作过程中,发现实验结果得曲线很难达到收敛,往往都就是发散得。
LQR控制:线性二次型调节器(Linear Quadratic Regulator —LQR)
问题在现代控制理论中占有非常重要得位置,受到控制界得普遍重视,应用十分广泛,就是现代控制理论得中最重要得成果之一。线性二次型(LQ)
性能指标易于分析、处理与计算,而且通过线性二次型最优设计方法得到得倒立摆系统控制方法,具好较好得鲁棒性与动态特性以及能够获得线性反馈结构等优点,因而在实际得倒立摆控制系统设计中,得到了广泛得应用。
LQR控制通过matlab得程序,根据期望性能指标选取Q与R,就可以得到反馈矩阵K得值。改变矩阵Q得值,可以得到不同得响应结果,Q得值越大,系统抵抗干扰能力越强,调整时间越短。
从实验得结果来瞧,LQR控制在快速性与抗干扰性上,都要强于PID控制,这就是因为LQR就是多变量控制.
经过了这次实验,我有了很多收获:
1. 作为一个小组得组长,我体会到了自己身上得责任与压力,从分配任务到实验进行,实验报告,对我自己都就是一个很好得锻炼。
2. 这次实验过程中,我也学习到了很多平时接触不到得知识,复习了matlab得应用,了解了simulink模块得应用,而且也对现代控制理论有了理解,为将来得学习打下基础. 3. 体会到了团队力量得强大,大家得互相努力,才有了这次实验得成功. 4. 最后离不开老师与同学对自己与我们这个小组得帮助,感谢老师与同学. 倒立摆实验小结 机自82
刘凯
08011044 倒立摆就是进行控制理论研究得典型实验平台。由于倒立摆系统得控制策略与杂技运动员顶杆平衡表演得技巧有异曲同工之处,极富趣味性,而且许多抽象得控制理论概念如系统稳定性、可控性与系统抗干扰能力等等,都可以通过倒立摆系统实验直观得表现出来。倒立摆系统本身所具有得高阶次、不稳定、多变量、非线性与强耦合特性。主要特点包括:1、开放性:采用四轴运动控制板卡,机械部分与电气部分非常容易扩展,可以根据用户需要进行配置.系统软件接口充分开放,用户不仅可以使用配套得实验软件,而且可以根据自己得实际需要扩展软件得功能.2 模块化:系统得机械部分可以选用直线或者旋转平台,根据实际需要配置成一级、二级或者三级倒立摆.而三级摆可以方便地改装成两级摆,两级摆可以
改装成一级摆。系统实验软件同样就是基于模块化得思想设计,用户可以根据需要
增加或者修改相应得功能模块。
3 简易安全:摆实验系统包括运动控制板卡、电控箱(旋转平台系统中与机械本体联在一起)、机械本体与微型计算机几个部分组成,安装升级方便。同时在机械、运动控制板卡与实验软件上都采取了积极措施,保证实验时人员得安全可靠与仪器安全。
4 方便性:倒立摆系统易于安装、升级,同时软件界面操作简单。
5 先进性:采用工业级四轴运动控制板卡作为核心控制系统,先进得交流伺服电机作为驱动,检测元件使用高精度高性能光电码盘。系统设计符合当今先进得运动控制发展方向。
6 实验软件多样化:用于实验得软件包括经典得BorlandC++,VC++,以及控制领域使用最多得仿真工具 Matlab,提供完备得设备接口与程序接口,方便用户进行实验与开发.
特性包括
1)
非线性
倒立摆就是一个典型得非线性复杂系统,实际中可以通过线性化得到系统得近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆得非线性控制正成为一个研究得热点。
2)
不确定性
主要就是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮得传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
3)
耦合性
倒立摆得各级摆杆之间,以及与运动模块之间都有很强得耦合关系,在倒立摆得控制中一般都在平衡点附近进行解耦计算,忽略一些次要得耦合量。
4)
开环不稳定性
倒立摆得平衡状态只有两个,即在垂直向上得状态与垂直向下得状态,其中垂直向上为绝对不稳定得平衡点,垂直向下为稳定得平衡点。5)约束限制
由于机构得限制,如运动模块行程限制,电机力矩限制等。为了制造方便与降低成本,倒立摆得结构尺寸与电机功率都尽量要求最小,行程限制对倒立摆得摆起影响尤为突出,容易出现小车得撞边现象。
这个学期我们学习了机械控制理论基础这门课程正好应用在本次实验上。我们借阅了很多关于智能控制及现代理论控制方面得书籍,深入地了一级倒立摆,二级倒立摆得原理。,、在完成得过程中尽管遇到了重重困难,但就是在老师与同学得帮助下,在通过我们自己得努力,也顺利将其克服。实验结束了,我们受益匪浅,这次实验不但锻炼了我们得发现问题,思考问题,解决问题得能力,还使我们对机械控制系统得进一步认识,培养了我们小组成员得分工协作能力 。
上一篇:哈夫曼编码实验报告
下一篇:数据库实验报告,(4)